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Graphene can be rendered semiconducting via energy gaps introduced in a variety of ways, e.g., coupling to
substrates, electrical biasing, or nanostructuring. To describe and compare different realizations of gapped
graphene we propose a simple two-band model in which a “mass” term is responsible for the gap. The optical
conductivity predicted for this model is obtained as a simple closed-form expression. In addition, analytical
estimates for the binding energy of excitons are derived and the impact of excitons on the optical response is
analyzed.

DOI: 10.1103/PhysRevB.79.113406 PACS number�s�: 78.67.�n, 71.35.Cc

I. INTRODUCTION

Graphene has an enormous potential for ultrasmall scale
electronic applications1–3 due to its structural stability and
huge mobility reaching values up to 200 000 cm2 /V s.3,4

The lack of a band gap in the celebrated Dirac energy spec-
trum of ideal graphene, however, is a severe restriction for
many applications. Fortunately, a substantial band gap can be
induced in several ways. Graphene grown epitaxially on SiC
has a band gap of about 0.2 eV due to interaction with the
substrate.5 The presence of the substrate invariably leads to a
substantial electron doping, however. Biasing a graphene bi-
layer also leads to the formation of a gap,6 but applying large
voltages across such minute distances is challenging. An al-
ternative route to large and controllable energy gaps is via
structuring at the nanoscale. For instance, sculpturing
graphene into nanoribbons produces a gap that can be varied
via the width and orientation of the ribbon.7 Also, large-area
samples of graphene will develop a gap if a periodic array of
circular holes �antidot lattice� is introduced.8,9 We have pre-
viously analyzed this option and find a gap that scales favor-
ably with geometry.8 Hence, energy gaps up to 0.5 eV can be
produced in this manner. The realization of such large-area
gapped graphene samples could enable fabrication of a wide
range of electronic and optoelectronic devices. Recently,
sculpturing of roughly circular holes with 3.5 nm diameter in
few-layer graphene was demonstrated,10 indicating that
graphene antidot lattices are indeed realistic structures.

The optical response of gapped graphene is of importance
for several reasons. First, it is needed for an understanding of
optoelectronic devices such as photodetectors and light-
emitting devices. Second, optical spectroscopy might be ap-
plied for measurements of the magnitude of the energy gap.
In Ref. 9, a comprehensive study of the optical response of
graphene antidot lattices was presented. It was demonstrated
that these structures are direct-gap semiconductors and that
clear spectroscopic signatures appear at the band edge. In the
present work, we wish to generalize this work in two direc-
tions. Primarily, a more “universal” description of the re-
sponse of gapped graphene is desirable. By “universal” we
mean a model that includes an adjustable energy gap but
ignores the detailed manner in which this gap is produced

�substrate, electrical bias, nanoscale sculpturing, etc.�. This
will highlight the role of the magnitude of the gap and enable
simple comparison between different realizations of gapped
graphene. Second, excitons are expected to modify the opti-
cal response significantly. This is because one expects a
strong electron-hole interaction in graphene: the two-
dimensional character leads to increased overlap between
electron and hole wave functions, and the screening is in
general weak, both in suspended graphene and graphene
placed on dielectric substrates. To meet these goals, we de-
velop in the present work a simplified model of the elec-
tronic structure of gapped graphene, in which the gap is pro-
duced by adding a constant “mass” term to the usual two-
band graphene model. By nature, a constant mass term
should be a better description of structures that preserve their
two-dimensional character �graphene on substrates, antidot
lattices, etc.� than quasi-one-dimensional structures such as
nanoribbons, for which the model will be less accurate.
However, this model is sufficiently simple that an analytic
expression for the optical conductivity can be found. More-
over, in the vicinity of the band gap, this model reduces to an
isotropic effective-mass description with an exceedingly
simple value for the reduced effective electron-hole pair
mass. Hence, excitonic effects can be estimated using a two-
dimensional effective-mass picture. To illustrate our findings,
we compare the optical response for different values of the
energy gap. Furthermore, the substantial influence of exci-
tonic effects on the spectra is demonstrated and implications
for detection of the band edge are discussed.

II. GAPPED GRAPHENE

In a nearest-neighbor tight-binding model using
�-electron states on the two sublattices as basis functions,
the electronic states are found as eigenfunctions of the
Hamiltonian,11

H = � 0

− �f�k��
− �f��k��

0 � , �1�

where �=3.033 eV �Ref. 11� is the transfer integral and f is
given by
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f�k�� = eikxa/�3 + 2e−ikxa/2�3 cos�kya/2� . �2�

The energy eigenvalues are E= ���f�k��� and the two bands

touch at the K point K� = ��3,1� ·2� /3a, where a is the lattice
constant, leading to a vanishing energy gap of regular

graphene. Linearization of the model around k� =K� yields the
celebrated description of carriers as massless Dirac
fermions.2 In this description, mass can be reintroduced by
the simple generalization,

H = � �

− �f�k��
− �f��k��

− �
� , �3�

which results in energies E= ���2+�2�f�k���2 and corre-
spondingly a gap of Eg=2� at the K point. Formally, this
model also arises in a tight-binding model of graphene with
on-site potentials � and −� for the two sublattices, respec-
tively, or in the description of a boron nitride layer in which
the two C atoms of the graphene unit cell are replaced by a
BN dimer.12 In addition, it can be seen as an approximate
model of Dirac fermions in an antidot lattice, provided the
spatially varying “mass” term is replaced by an effective
average value.8 In all cases, the model Eq. �3� can be viewed
as an effective description provided the appropriate value of
� is adopted. It is clear, however, that the present model is
only a simplistic approximation for the actual structures.
Hence, the predicted results are expected to be valid only in
cases where the gap is produced by a minor perturbation and
only for an energy range in the vicinity of the gap. Below,
results for antidot lattices are used to illustrate this fact.

Apart from its universal nature, the great value of the
present model is its mathematical similarity to that of regular
graphene. The close similarity implies that several known
analytical results for regular graphene can be adapted to the
gapped case provided appropriate adjustments are made. For
the optical response, the starting point is the transition energy

Ecv=2��2+�2�f�k���2. For regular graphene, the expression
reduces to �cv=2��f�k���. Thus, gapped and regular cases are
related via Ecv

2 =�cv
2 +Eg

2. To illustrate the importance of this
relation, we first consider the joint density of states D���,

D��� =� ��Ecv − 	��d2k . �4�

Using well-known scaling properties of delta functions, it
follows that

D��� = 2	�� ��Ecv
2 − 	2�2�d2k

=2	�� ���cv
2 + Eg

2 − 	2�2�d2k

�2	�� ���cv
2 − 	2�̃2�d2k=

�

�̃
� ���cv − 	�̃�d2k . �5�

The integral is recognized as the joint density of states of
regular graphene but with a shifted argument �̃���2−�g

2,
where �g=Eg /	. Hence, the results of Ref. 13 immediately
imply that

D��� = �4
/a2��6
̃�Re	K
�6 − 
̃��2 + 
̃�3/128
̃�� , �6�

where K is the complete elliptic integral of the first kind and
we have introduced normalized frequencies 
=	� /� and


̃=	�̃ /�. Also, it is understood that D���=0 for ���g and

for 
̃�6. This simple result is illustrated in Fig. 1 for two
values of the energy gap. It is clear that, apart from the
forbidden gap, the joint density of states is only weakly af-
fected by the presence of an energy gap. This is, of course, a
consequence of the fact that the band structure rapidly ap-
proaches that of regular graphene for energies above or
below the gap.

The optical conductivity ̃��� is more complicated than
the joint density of states as the k-dependent momentum ma-
trix element must be taken into account. Effects due to dis-
order and imperfections can conveniently be modeled by a
phenomenological broadening parameter, as we shall discuss
below. Here, we first consider the ideal case, when the real
part ��� is given by the formula

��� = �e2/2�m2�� � �Pvc�2��Ecv − 	��d2k , �7�

where Pvc is the in-plane momentum matrix element, and m
is the free-electron mass. The somewhat lengthy derivation
of Pvc can be carried out along the lines of Ref. 13 and when
summed over the two in-plane directions, the result can be
written as,

�Pvc�2 = ��cv
2 /Ecv

2 ��Pvc
0 �2 − �ma/	�2�Eg

2/6Ecv
2 ���cv

2 /4� − 9�2, �8�

where �Pvc
0 �2 is the value of regular graphene. A simple cal-

culation using the scaling procedure described above then
demonstrates that

��� = ��̃2/�2�0��̃� − ��g
2/�3�
��̃2/4� − �9�2/	2��

��e2a2/24��D��� , �9�

where 0��� is the conductivity of regular graphene and
D��� is the joint density of states found above. Inserting Eq.
�6� and utilizing our previous derivation of 0���,9,13 we
finally find

��� = �0/�
2���2
̃/3�

�Re	�144
̃ − 84
̃2 + 3
̃4 + 72
2 − 2
2
̃2/24
̃�

�K
�6 − 
̃��2 + 
̃�3/128
̃�

FIG. 1. �Color online� Joint density of states for two character-
istic values of the energy gap.
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− 12E
�6 − 
̃��2 + 
̃�3/128
̃�� . �10�
Here, E is the complete elliptic integral of the second kind
and 0=e2 /4	 is the dc value of graphene. This expression

reduces to the graphene case if the limit 
̃→
 is taken.
Also, it can be demonstrated that ��g�=20 and that
slightly above the gap ���20�g

2 /�2 in agreement with
the corresponding derivation for gapped graphene in the lin-
earized Dirac model.14 The conductivity is plotted for some
representative cases in Fig. 2.

We have carefully checked the correctness of the analytic
expression Eq. �10� by comparison to a direct numerical
evaluation of Eq. �7� using the improved triangle method.9

Also, to validate the gapped graphene model, we have com-
pared the optical spectra to the numerical results for
graphene antidot lattices.9 In this particular realization, en-
ergy gaps are introduced by forming an array of circular
holes in a graphene sheet and the magnitude of the gap de-
pends strongly on the hole diameter. In Fig. 3, we have com-
pared numerical antidot lattice spectra to the predictions of
the present model using energy gaps adjusted to fit the anti-
dot values. It is noted that the gapped graphene spectra are
quite reasonable approximations, especially for the lower
band-gap case. The two cases represent different degrees of
perturbation of the ideal graphene structure and, as expected,
larger deviations are observed for a larger perturbation. Ob-
viously, far above the band gap, the numerical antidot spectra
deviate substantially from the gapped graphene model as a
consequence of the complicated antidot lattice band struc-
ture. However, in the vicinity of the band edge the gapped

graphene model is a reasonable approximation. At this point,
broadening can be introduced and the imaginary part of the
complex conductivity computed. To this end, we first convo-
lute the real part of the conductivity with a Gaussian broad-
ening of 50 meV and subsequently apply the Kramers-
Kronig transformation. The resulting spectra are shown in
Fig. 4.

III. EXCITONS IN GAPPED GRAPHENE

As gapped graphene is a low-dimensional semiconductor
and screening in most situations is expected to be weak,
excitonic effects will severely modify the optical response,
especially below the band gap. The influence of excitons on
the optical response of graphene nanoribbons has previously
been studied using a highly accurate but computationally ex-
pensive Bethe-Salpeter approach.15,16 The predicted exciton
binding energies close to 1 eV testify strongly to the signifi-
cance of excitons in gapped graphene generally. In the Wan-
nier model, the binding energy of excitons is determined by
the effective Rydberg energy Ry� of a particular realization
of gapped graphene. To provide a quantitative estimate we
note that the transition energy Ecv expanded around the K
point can be written as

Ecv  Eg + �3�2a2/4��k2 = Eg + �2	2vF
2 /Eg�k2, �11�

where vF=�3�a /2	 is the Fermi velocity. Hence, the disper-
sion is that of an isotropic parabola and writing the result in
the form of an effective-mass dispersion Ecv=Eg+	2k2 /2�,
we find a reduced effective electron-hole pair mass of �
=Eg /4vF

2 . Thus, the effective mass is simply proportional to
the band gap, similarly to the case of carbon nanotubes.17 To
evaluate Ry� we also need the appropriate dielectric constant
� screening the Coulomb interaction. This in itself is a com-
plicated quantity depending on the details of the sample and
its surroundings. As an illustrative example, we will consider
a sample positioned on the surface of a SiO2 substrate and,
for simplicity, assume that screening by the substrate is the
dominating mechanism. In this case, the resulting dielectric
constant can simply be taken as the average between that of
the substrate �SiO2

and that of air leading to �= ��SiO2
+1� /2

2.5.18 Since vF106 m /s, the effective mass for a band
gap of 0.5 and 1.0 eV becomes 0.022m and 0.044m, respec-
tively. In turn, the effective Rydbergs Ry�=13.6 eV � /m�2

for these cases are 48 and 96 meV, respectively. These large

FIG. 2. �Color online� Analytical conductivity spectra for two
examples of gapped graphene.

FIG. 3. �Color online� Comparison of spectra for graphene an-
tidot lattices and gapped graphene. The energy gaps have been ad-
justed to fit two particular antidot lattice geometries.

FIG. 4. �Color online� Complex conductivity of gapped
graphene assuming a broadening of 50 meV.
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values indicate that, indeed, excitons are of importance in
gapped graphene. We stress, however, that these values of
Ry� are only the relevant energy scale for extended Wannier
excitons with vanishing screening by the gapped graphene
itself.

We will continue to work within the effective-mass ap-
proximation to estimate qualitatively the influence on the full
optical response spectrum. In this approximation, the binding
energy of the lowest �1s� exciton equals 4Ry�, which is
clearly a substantial fraction �around 38%� of the band gap.
Assuming, in addition, k-independent momentum matrix el-
ements pvc yields the two-dimensional �2D� Elliott formula19

for the excitonic conductivity X���,

X��� = FC�����n=0

� 4��� + �n +
1

2�−2�
�n +

1

2�3

+
2����

1 + exp�− 2�/���� , �12�

where �= �	�−Eg� /Ry�, � is the unit-step function, and
FC���=e2��pvc�2 / �	2m2�� is the free-carrier conductivity. It
follows that a simple estimate for the excitonic spectrum of
gapped graphene can be obtained using Eq. �10� as the ap-
propriate free-carrier expression. In the contribution from
bound excitons we take, for simplicity, FC���0. Hence,

X���  0�
n=0

� 4�
� + �n +
1

2�−2�
�n +

1

2�3
+ ���

2����

1 + exp�− 2�/���
.

�13�

The excitonic spectrum is illustrated in Fig. 5 for the cases
discussed above, i.e., Ry�=48 meV and 96 meV. Here,
broadening of 50 meV is assumed and the free-carrier spec-
tra are included for comparison. The most prominent differ-
ence is clearly the large 1s resonance. The higher excitons
are included in the calculations but due to their lower oscil-
lator strength and close proximity to the band edge, they are
not resolved in the spectra. If slightly larger broadening is
assumed, the 1s resonance will merge with the continuum, in
particular in the case of low band gaps. This may make it

difficult to clearly identify the band edge in an optical spec-
troscopic measurement. In this case, fitting the experimental
spectrum with a model such as the present one may provide
an estimate of the band edge.

IV. SUMMARY

In summary, a simple two-band model of gapped
graphene has been proposed as an approximate description
of various physical realizations of semiconducting graphene.
The gap is introduced as a spatially constant “mass” term.
The simplicity of the model implies that important spectra
such as the joint density of states and the optical conductivity
can be obtained completely analytically. Near the band edge,
the model is reduced to a simple isotropic effective-mass
description with an effective-mass proportional to the energy
gap. Based on these findings, the effect of excitons on the
optical response is estimated. Within the Wannier model, we
estimate that exciton binding energies for samples placed on
SiO2 substrates are approximately 40% the energy gap.
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FIG. 5. �Color online� Comparison of spectra with and without
excitons for gapped graphene on a SiO2 substrate. The two panels
illustrate cases of medium and large band gaps.
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